La siguiente es la lista de publicaciones en revistas científicas del Grupo de Investigación en Análisis Numérico y Cálculo Científico (GIANuC²), ordenadas por año de ocurrencia, a partir de 2020, fecha de creación de este grupo.
[ 1 ] | Tomás Barrios, Edwin Behrens, and Rommel Bustinza: An a-posteriori error estimator of the Lamé equations considering nonhomogeneous Dirichlet boundary condition. Journal of Mathematical Analysis and Applications, vol. 553, Article Number 129900, (2026). | DOI |
[ 9 ] | Jessika Camaño and Ricardo Oyarzúa: A conforming and mass conservative pseudostress-based mixed finite element method for the stationary Stokes problem. Calcolo, vol. 62, 3, article: 31, (2025). | DOI |
[ 8 ] | Alonso J. Bustos, Sergio Caucao, Gabriel N. Gatica, and Benjamín N. Venegas: New fully mixed finite element methods for the coupled convective Brinkman-Forchheimer and nonlinear transport equations. Journal of Scientific Computing, vol. 104, 2, article: 64, (2025). | DOI |
[ 7 ] | Tomás Barrios, E. Behrens, R. Bustinza, and J.M. Cascón: An a posteriori error estimator for an augmented variational formulation of the Brinkman problem with mixed boundary conditions and non-null source terms. Journal of Computational Physics, vol 537. (19 pages). Article number 114056. (2025). | DOI |
[ 6 ] | Rodolfo Araya, Christopher Harder, Abner Poza, Frederic Valentin: Multiscale hybrid-mixed methods for the Stokes and Brinkman equations-a priori analysis. SIAM Journal on Numerical Analysis, vol. 63, (2), pp. 588-618, (2025). | DOI |
[ 5 ] | Jessika Camaño, Ricardo Oyarzúa, Miguel Serón, and Manuel Solano: A strong mass conservative finite element method for the Navier-Stokes/Darcy coupled system. Applied Mathematics Letters, vol. 163, Paper No. 109447, (2025). | DOI |
[ 4 ] | Gabriel N. Gatica, Cristian Inzunza, and Ricardo Ruiz-Baier: Primal-mixed finite element methods for the coupled Biot and Poisson-Nernst-Planck equations. Computers & Mathematics with Applications, vol. 186, pp. 53-83, (2025). | DOI |
[ 3 ] | Sergio Caucao, Gabriel N. Gatica, and Luis F. Gatica: A posteriori error analysis of a mixed finite element method for the stationary convective Brinkman-Forchheimer problem. Applied Numerical Mathematics, vol. 211, pp. 158-178, (2025). | DOI |
[ 2 ] | Isaac Bermudez, Jessika Camaño, Ricardo Oyarzúa, and Manuel Solano: A conforming mixed finite element method for a coupled Navier–Stokes/transport system modelling reverse osmosis processes. Computer Methods in Applied Mechanics and Engineering, vol. 433, Parte A, 1, Paper No. 117527, (2025). | DOI |
[ 1 ] | Sergio Caucao, Gabriel N. Gatica, Saulo R. Medrado, and Yuri D. Sobral: Nonlinear twofold saddle point-based mixed finite element methods for a regularized mu(I)-rheology model of granular materials. Journal of Computational Physics, vol. 520, Art. Num. 113462, (2025). | DOI |
[ 6 ] | Tomás Barrios and Rommel Bustinza: An a posteriori error analysis for an augmented discontinuous Galerkin method applied to Stokes problem. Numerical Methods for Partial Differential Equations, vol. 40, 5, e23100, (2024). | DOI |
[ 5 ] | Sergio Caucao, Gabriel N. Gatica, and Juan P. Ortega: A three-field mixed finite element method for the convective Brinkman-Forchheimer problem with varying porosity. Journal of Computational and Applied Mathematics, vol 451, Art. Num. 116090, (2024). | DOI |
[ 4 ] | Sergio Caucao, Tongtong Li, and Ivan Yotov: An augmented fully-mixed formulation for the quasistatic Navier-Stokes-Biot model. IMA Journal of Numerical Analysis, vol. 44, 2, pp. 1153-1210, (2024). | DOI |
[ 3 ] | Rodolfo Araya, Cristian Cárcamo, Abner H. Poza, and Eduardo Vino: An adaptive stabilized finite element method for the Stokes-Darcy coupled problem. Journal of Computational and Applied Mathematics, vol 443, Art. Num. 115753, (2024). | DOI |
[ 2 ] | Abner H. Poza and Ramiro Rebolledo: Equal-order finite element method for the Stokes equations with variable viscosity. Applied Mathematics Letters, vol. 149, article: 108930, (2024). | DOI |
[ 1 ] | Sergio Caucao and Johann Esparza: An augmented mixed FEM for the convective Brinkman-Forchheimer problem: a priori and a posteriori error analysis. Journal of Computational and Applied Mathematics, vol 438, Art. Num. 115517, (2024). | DOI |
[ 11 ] | Tomás Barrios, Rommel Bustinza, and Camila Campos: A note on a posteriori error estimates for dual mixed methods with mixed boundary condition. Numerical Methods for Partial Differential Equations, vol. 39, 5, pp. 3897-3918, (2023). | DOI |
[ 10 ] | Sergio Carrasco, Sergio Caucao, and Gabriel N. Gatica: New mixed finite element methods for the coupled convective Brinkman-Forchheimer and double-diffusion equations. Journal of Scientific Computing, vol. 97, 3, article: 61, (2023). | DOI |
[ 9 ] | Sergio Caucao, Gabriel N. Gatica, and Luis F. Gatica: A Banach spaces-based mixed finite element method for the stationary convective Brinkman-Forchheimer problem. Calcolo, vol. 60, 4, article: 51, (2023). | DOI |
[ 8 ] | Sergio Caucao, Eligio Colmenares, Gabriel N. Gatica, and Cristian Inzunza: A Banach spaces-based fully-mixed finite element method for the stationary chemotaxis-Navier-Stokes problem. Computer and Mathematics with Applications, vol. 145, pp. 65-89, (2023). | DOI |
[ 7 ] | Lady Angelo, Jessika Camaño, and Sergio Caucao: A five-field mixed formulation for stationary magnetohydrodynamic flows in porous media. Computer Methods in Applied Mechanics and Engineering, vol. 414, Art. Num. 116158, (2023). | DOI |
[ 6 ] | Sergio Caucao and Marco Discacciati: A mixed FEM for the coupled Brinkman-Forchheimer/Darcy problem. Applied Numerical Mathematics, vol. 190, pp. 138-154, (2023). | DOI |
[ 5 ] | Sergio Caucao, Gabriel N. Gatica, and Juan P. Ortega: A posteriori error analysis of a Banach spaces-based fully mixed FEM for double-diffusive convection in a fluid-saturated porous medium. Computational Geosciences, vol. 27, 2, pp. 289-316, (2023). | DOI |
[ 4 ] | Rodolfo Araya, Cristian Cárcamo, and Abner H. Poza: A stabilized finite element method for the Stokes–Temperature coupled problem. Applied Numerical Mathematics, vol. 187, pp. 24-49, (2023). | DOI |
[ 3 ] | Ana Alonso-Rodriguez and Jessika Camaño: A graph-based algorithm for the approximation of the spectrum of the curl operator. SIAM Journal on Scientific Computing, vol. 45, 1, pp. A147-A169, (2023). | DOI |
[ 2 ] | Ana Alonso-Rodriguez, Jessika Camaño, Eduardo De los Santos, and Rodolfo Rodríguez: Divergence-free finite elements for the numerical solution of a hydroelastic vibration problem. Numerical Methods for Partial Differential Equations, vol. 39, pp. 163-186, (2023). | DOI |
[ 1 ] | Verónica Anaya, Ruben Caraballo, Sergio Caucao, Luis F. Gatica, Ricardo Ruiz-Baier, and Ivan Yotov: A vorticity-based mixed formulation for the unsteady Brinkman-Forchheimer equations. Computer Methods in Applied Mechanics and Engineering, vol. 404, Art. Num. 115829, (2023). | DOI |
[ 9 ] | Sergio Caucao, Ricardo Oyarzúa, and Segundo Villa-Fuentes: A posteriori error analysis of a momentum and thermal energy conservative mixed FEM for the Boussinesq equations. Calcolo, vol. 59, 4, article: 45, (2022). | DOI |
[ 8 ] | Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa, and Paulo Zúñiga: A posteriori error analysis of a mixed finite element method for the coupled Brinkman-Forchheimer and double-diffusion equations. Journal of Scientific Computing, vol 93, article:50, (2022). | DOI |
[ 7 ] | Tomás P. Barrios, Rommel BUSTINZA, and Camila Campos: An a posteriori error estimator for a non homogeneous Dirichlet problem considering a dual mixed formulation. Trends in Computational and Applied Mathematics, vol 23, Issue 3, pp 549-568, (2022). | DOI |
[ 6 ] | Sergio Caucao, Tongtong Li, and Ivan Yotov: A multipoint stress-flux mixed finite element method for the Stokes-Biot model. Numerische Mathematik, vol. 152, pp. 411-473, (2022). | DOI |
[ 5 ] | Lapeña-Mañero, P., García-Casuso, C., Montenegro-Cooper, J. M., King, R. W., and Edwin M. Behrens: An Open-Source System for Generating and Computer Grading Traditional Non-Coding Assignments. Electronics, 11(6):917, (2022). | DOI |
[ 4 ] | Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes, and Ivan Yotov: A three-field Banach spaces-based mixed formulation for the unsteady Brinkman-Forchheimer equations. Computer Methods in Applied Mechanics and Engineering, vol. 394, Art. Num. 114895, (2022). | DOI |
[ 3 ] | Gonzalo A. Benavides, Sergio Caucao, Gabriel N. Gatica, and Alejandro A. Hopper: A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem. Calcolo, vol. 59, 1, article: 6, (2022). | DOI |
[ 2 ] | Tomás P. Barrios, Edwin M. Behrens, and Rommel Bustinza: Numerical Analysis of a stabilized mixed method applied to incompressible elasticity problems with Dirichlet and with mixed boundary conditions. Advances in Computational Mathematics. vol. 48, issue 4, Article Number 43, (2022). | DOI |
[ 1 ] | Jessika Camaño, Sergio Caucao, Ricardo Oyarzúa, and Segundo Villa-Fuentes: A posteriori error analysis of a momentum conservative Banach spaces based mixed-FEM for the Navier-Stokes problem. Applied Numerical Mathematics, vol. 176, pp. 134-158, (2022). | DOI |
[ 9 ] | Sergio Caucao, Gabriel N. Gatica, and Juan P. Ortega: A fully-mixed formulation in Banach spaces for the coupling of the steady Brinkman-Forchheimer and double-diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 55, 6, pp. 2725-2758, (2021). | DOI |
[ 8 ] | Rodolfo Araya, Cristian Cárcamo, and Abner H. Poza: An adaptive stabilized finite element method for the Darcy’s equations with pressure dependent viscosities. Computer Methods in Applied Mechanics and Engineering, vol. 387, Paper No. 114100 (2021). | DOI |
[ 7 ] | Sergio Caucao and Ivan Yotov: A Banach space mixed formulation for the unsteady Brinkman-Forchheimer equations. IMA Journal of Numerical Analysis, vol. 41, 4, pp. 2708-2743, (2021). | DOI |
[ 6 ] | Jessika Camaño, Carlos García, and Ricardo Oyarzúa: Analysis of a momentum conservative mixed-FEM for the stationary Navier-Stokes problem. Numerical Methods for Partial Differential Equations 37, no. 5, pp. 2895-2923, (2021). | DOI |
[ 5 ] | Rodolfo Araya, Cristian Cárcamo, Abner H. Poza, and Frederic Valentin: An adaptive multiscale hybrid-mixed method for the Oseen equations. Advances in Computational Mathematics, vol. 47, 1, pp. 15-36, (2021). | DOI |
[ 4 ] | Tomás P. Barrios, Edwin M. Behrens, and Rommel Bustinza: An a posteriori error estimate for a dual mixed method applied to Stokes system with non null source terms. Advances in Computational Mathematics, vol. 47, issue 5, Article Number 77, (2021). | DOI |
[ 3 ] | Patrick E. Farrel, Luis F. Gatica, Bishnu Lamichhane, Ricardo Oyarzúa, and Ricardo Ruiz-Baier: Mixed Kirchhoff stress-displacement-pressure formulations for incompressible hyperelasticity. Computer Methods in Applied Mechanics and Engineering, vol 374 (2021) 113584. | DOI |
[ 2 ] | Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa, and Felipe Sandoval: Residual-based a posteriori error analysis for the coupling of the Navier-Stokes and Darcy-Forchheimer equations. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 55, 2, pp. 659-687, (2021). | DOI |
[ 1 ] | Sergio Caucao, Gabriel N. Gatica, and Felipe Sandoval: A fully-mixed finite element method for the coupling of the Navier-Stokes and Darcy-Forchheimer equations. Numerical Methods for Partial Differential Equations, vol. 37, 3, pp. 2550-2587, (2021). | DOI |
[ 7 ] | Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa, and Nestor Sánchez: A fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman-Forchheimer equations. Journal of Scientific Computing, vol. 85, 2, article:44, (2020). | DOI |
[ 6 ] | Sergio Caucao, Ricardo Oyarzúa, and Segundo Villa-Fuentes: A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy. Calcolo, vol. 57, 4, article:36, (2020). | DOI |
[ 5 ] | Tomás Barrios and Rommel Bustinza: An a-priori error analysis for discontinuous Lagrangian finite elements applied to nonconforming dual-mixed formulations: Poisson and Stokes problems. Electronic Transactions on Numerical Analysis (ETNA), vol. 52, pp. 455-479, (2020). | DOI |
[ 4 ] | Gonzalo A. Benavides, Sergio Caucao, Gabriel N. Gatica, and Alejandro A. Hopper: A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem. Computer Methods in Applied Mechanics and Engineering, vol. 371, Art. Num. 113285, (2020). | DOI |
[ 3 ] | Sergio Caucao, Marco Discacciati, Gabriel N. Gatica, and Ricardo Oyarzúa: A conforming mixed finite element method for the Navier-Stokes/Darcy-Forchheimer coupled problem. ESAIM Mathematical Modelling and Numerical Analysis, vol. 54, 5, pp. 1689-1723, (2020). | DOI |
[ 2 ] | Tomás Barrios, José Manuel Cascón, and María González: On an adaptive stabilized mixed finite element method for the Oseen problem with mixed boundary conditions. Computer Methods in Applied Mechanics and Engineering, vol. 365, (2020), 113007. | DOI |
[ 1 ] | Tomás Barrios, Edwin M. Behrens, and Rommel Bustinza: A stabilised mixed method applied to Stokes system with non homogeneous source terms: The stationary case. International Journal for Numerical Methods in Fluids, vol. 92, Issue 6, pp. 509-527, (2020). | DOI |